Soal persamaan dan pertidaksamaan rasional dan irasional
Soal persamaan rasional
1. Tentukan nilai x yang memenuhi persamaan rasional berikut x-3/x-1 + x-2/x-1 = 4
Penyelesaian :
X-3 +(x-2) /x-1 = 4
2x-5/x-1 = 4
2x – 5 = 4 (x – 1)
2x – 5 = 4x – 4
4x – 2x = -5 + 4
2x = -1
x = -1/2
2. Tentukan nilai x yang memenuhi persamaan rasional dibawah ini
1. x+1/x-2=2
2. 2x-4/x+1= 4
Penyelesaian :
Cara menjawab soal 1 sebagai berikut:
- x + 1 = 2 (x – 2) atau x + 1 = 2x – 4
- x – 2x = -4 – 1
- -x = -5
- x = 5
Cara menjawab soal 2 sebagai berikut:
- 2x – 4 = 4 (x + 1)
- 2x – 4 = 4x + 4
- 2x – 4x = 4 + 4
- -2x = 8
- x = 8/-2 = -4
1. Tentukan himpunan penyelesaian dari pertidaksamaan rasional dari x-4/x-1≥0
Penyelesaian :
Untuk menjawab soal ini tentukan terlebih dahulu syarat pertidaksamaan yaitu x – 1 ≠ 0 atau x ≠ 1.
Selanjutnya kita buat pembuat nol sehingga diperoleh hasil sebagai berikut:
- x – 4 = 0 maka x = 4
- x – 1 = 0 maka x = 1
Angka 0 kita subtitusi ke (x – 4)/(x – 1) maka didapat (0 – 4)/(0 – 1) = + 4. Jadi tanda garis bilangan di sebelah kiri 1 adalah + lalu kita buat selang seling untuk tanda garis bilangan selanjutnya.
Karena notasi pertidaksamaan lebih dari sama dengan maka himpunan penyelesaian (x – 4)/(x – 1) terletak pada garis bilangan bertanda + atau pada interval x < 1 atau x ≥ 4.
2. Tentukan himpunan penyelesaian dari pertidaksamaan rasional 2x+4/x-2 < 0
Penyelesaian :
Syarat pertidaksamaan soal nomor 2 adalah x – 2 ≠ 0 atau x ≠ 2. Kemudian kita buat pembuat nol sehingga diperoleh:
2x + 4 = 0 maka x = -2
x – 2 = 0 maka x = 2
Karena notasi pertidaksamaan soal ini adalah kurang dari maka interval himpunan penyelesaian berada di tanda negatif atau -2 < x < 2.
Persamaan irasional
1. Tentukan nilai x yang memenuhi persamaan irasional √ x – 1 = x – 3
penyelesaian:
Untuk menjawab soal 1 kita tentukan dahulu syarat agar persamaan irasional berlaku yaitu:
x – 1 ≥ 0 atau x ≥ 1.
x – 3 ≥0 atau x ≥ 3.
Ambil syarat yang terbesar sehingga syarat yang berlaku pada persamaan irasional soal nomor 1 adalah x ≥ 3.
Selanjutnya kita hilangkan tanda akar dengan cara mengkuadratkan kedua ruas persamaan seperti dibawah ini:
( √ x – 1 )2 = (x – 3)2
(x – 1) = x2 – 6x + 9
x2 – 6x – x + 9 + 1 = 0
x2 – 7x + 10 = 0
(x – 2) (x – 5) = 0
x = 2 atau x = 5
Karena syarat yang berlaku pada persamaan nomor 1 adalah x ≥ 3 maka nilai x yang memenuhi adalah x = 5. Jadi soal nomor 1 jawabannya adalah x = 5.
Untuk memeriksa apakah jawaban ini benar atau salah maka caranya cukup mudah yaitu dengan subtitusi x = 5 ke persamaan irasional nomor 1:
√ x – 1 = x – 3
√ 5 – 1 = 5 – 3
√ 4 = 2
2 = 2
Kita lihat jawabannya sesuai.
Jika x = 2 kita subtitusi ke persamaan maka hasilnya sebagai berikut:
√ 2 – 1 = 2 – 3
1 = – 1.
Kita lihat hasilnya tidak sesuai
Pertidaksamaan irasional
1. Tentukan himpunan penyelesaian dari pertidaksamaan irasional √ x – 5 < 2
Penyelesaian :
Untuk menjawab soal ini kita tentukan terlebih dahulu syarat agar pertidaksamaan irasional berlaku yaitu:
x – 5 ≥ 0
x ≥ 5
Selanjutnya kita kuadratkan kedua ruas pertidaksamaan irasional sehingga didapat:
(√ x – 5 )2 < 22.
x – 5 < 4
x < 4 + 5 atau x < 9
Lalu kita buat garis bilangan untuk menentukan irisan antara syarat x ≥ 5 dan x < 9. maka himpunan pertidaksamaan irasional nomor 1 adalah 5 ≤ x < 9.
2. Tentukan himpunan penyelesaian dari pertidaksamaan irasional √ x – 1 > 2
Penyelesaian :
Syarat yang berlaku pada pertidaksamaan irasional diatas sebagai berikut:
- x – 1 ≥ 0.
- x ≥ 1.
Kemudian kita kuadratkan pertidaksamaan diatas sehingga didapat:
- ( √ x – 1 )2 > 22
- x – 1 > 4
- x > 4 + 1
- x > 5
Jadi himpunan penyelesaian pertidaksamaan ini adalah x > 5.
Daftar pustaka
Soal fismat. 2019. 2019. Contoh soal persamaan dan pertidaksamaan rasional. Contoh soal persamaan dan pertidaksamaan irasional
Komentar
Posting Komentar