Komposisi fungsi dan invers fungsi

 

Fungsi Komposisi

Seperti yang tela disebutkan di atas, fungsi komposisi merupakan suatu penggabungan dari suatu operasi dua jenis fungsi f(x) dan juga g(x) sehingga mampu menghasilkan suatu fungsi baru.

Adapun rumus untuk fungsi komposisi, yaitu:

Rumus Fungsi Komposisi

Sperti yang terdapat pada uraian di atas, operasi untuk fungsi komposisi tersebut biasa dinotasikan dengan penggunakan huruf atau simbol “o”.

Di mana simbol tersebut bisa kita baca sebagai komposisi ataupun bundaran. Fungsi baru inilah yang bisa terbentuk dari f(x) dan g(x) yaitu:

1. (f o g)(x) yang berarti g dimasukkan ke f

2. (g o f)(x) yang berarti f dimasukkan ke g

Fungsi tunggal merupakan suatu fungsi yang dapat dinotasikan dengan penggunakan huruf “f o g” atau dapat dibaca “f bundaran g”.

Lalu Fungsi (f o g) (x) = f (g (x)) → fungsi g (x) dikomposisikan sebagai fungsi f (x)

Sementara itu, “g o f” dibaca sebagai fungsi g bundaran f. Sehingga, “g o f” merupakan fungsi f yang diselesaikan terlebih dahulu dari fungsi g.

Apabila f : A → B ditentukan dengan menggunakan rumus y = f(x)

Apabila g : B → C ditentukan dengan menggunakan rumus y = g(x)

Sehingga, akan kita peroleh hasil fungsi g dan f yaitu:

h(x) = (gof)(x) = g( f(x))

Dari definisi di atas maka bisa kita simpulkan jika fungsi yang melibatkan fungsi f dan g bisa kita tulis seperti berikut ini:

(g o f)(x) = g(f(x))

(f o g)(x) = f(g(x))


Sifat Sifat Fungsi Komposisi

Berikut akan kami berikan beberapa sifat dari fungsi komposisi, diantaranya adalah sebagai berikut:

Apabila f : A → B , g : B → C , h : C → D, maka akan berlaku beberapa sifat seperti:

(f o g)(x)≠(g o f)(x). Tidak berlaku sifat komutatif.

[f o (g o h)(x)] = [(f o g ) o h (x)]. Akan bersifat asosiatif.

 Apabila fungsi identitas I(x), maka akan berlaku (f o l)(x) = (l o f)(x) = f(x).


Contoh Soal Fungsi Komposisi


Untuk memahami uraian di atas, berikut akan kami berikan contoh soal untuk fungsi komposisi yang sederhana, perhatikan baik-baik ya.

Soal 1.

Jika diketahui f (x) = 3x + 4 dan g (x) = 3x berapa nilai dari (f o g) (2)?

Jawab:

(f o g) (x) = f (g (x))

= 3 (3x) + 4

= 9x + 4

(f o g) (2) = 9(2) + 4

= 22


Fungsi Invers


Fungsi invers terjadi sebab adanya sebuah fungsi yang dinotasikan dengan f (x) serta memiliki relasi pada setiap himpunan A ke setiap himpunan B.

Sehingga akan menjadi sebuah fungsi invers yang dinotasikan dengan f-1 (x) yang tak lain mempunyai relasi dari himpunan B ke setiap himpunan A.

Sehingga, fungsi invers diperoleah dari f : A → B yang berubah menjadi f-1 B → A sehingga daerah asal atau domain f (x), menjadi daerah kawan atau kodomain menjadi daerah hasil atau range f-1 (x) yakni himpunan A. Begitu pula sebaliknya terjadi pada himpunan B.

Sebuah fungsi f mempunyai fungsi invers (kebalikan) f-1 jika f adalah fungsi satu-satu dan fungsi pada (bijektif). Hubungan tersebut bisa dinyatakan seperti berikut:


(f-1)-1 = f


Simplenya, fungsi bijektif berlangsung pada saat jumlah anggota domain sama dengan jumlah anggota kodomain.

Tidak terdapat dua atau lebih domain berbeda dipetakan ke kodomain yang sama. Serta pada setiap kodomain mempunyai pasangan di domain. 

Pemetaan kedua bukan merupakan fungsi bijektif sebab pemetaan tersebut hanya berlangsung fungsi pada.

Domain d dan e dipetakan ke anggota kodomain yang sama. Pemetaan ketiga bukan fungsi bijektif sebab pemetaan tersebut hanya berlangsung pada fungsi satu-satu. Kodomain 9 tidak mempunyai pasangan pada anggota domain.

Sebagai contoh, f fungsi yang memetakan x ke y, sehingga bisa kita tulisakan menjadi y = f(x), maka f-1 merupakan fungsi yang memetakan y ke x, ditulis x = f-1(y).

Misalnya f : A →B fungsi bijektif. Invers fungsi f merupakan fungsi yang mengawankan pada masing-masing elemen B dengan tepat satu elemen pada A.


Terdapat 3 tahapan untuk menentukan fungsi invers, antara lain:

Ubahlah bentuk y = f(x) menjadi bentuk x = f(y).

Tuliskan x sebagai f-1(y) sehingga f-1(y) = f(y).

Ubahlah variabel y dengan x sehingga akan didapatkan rumus fungsi invers f-1(x).


daftar pustaka

Yuksinau.id. 2021. komposisi fungsi dan invers fungsi

Komentar

Postingan populer dari blog ini

INDUKSI MATEMATIKA

Limit

Program linear